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1  Introduction

A small autonomous power system (SAPS) is a system that generates electricity in 
order to serve a nearby low energy demand, and it usually operates in areas that are 
far from the grid. Generally, there are three methods of supplying energy in rural 
areas: grid extension, use of fossil fuel generators, and hybrid power systems with 
renewable energy sources (RES). In isolated or remote areas, the first two methods 
can be very expensive [1]. The typical cost of a low-voltage distribution line is 
about US$ 3,000/km for the plains and it increases by 10–25 % for remote hilly re-
gions [2], whereas the cost of fossil fuel delivery in these areas may be greater than 
the cost of the fuel itself.

RES can often be used as a primary source of energy in such a system, as they are 
usually present in geographically remote and demographically sparse areas. How-
ever, since renewable technologies such as wind turbines (WTs) and photovoltaics 
(PVs) are dependent on a resource that is not dispatchable, there is an impact on the 
reliability of the electric energy of the system, which has to be considered [3]. The 
basic way to solve this problem is to use storage and/or dispatchable generators, 
such as diesel generators.
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2 Y. A. Katsigiannis et al.

Due to the unique characteristics of SAPS, reliability evaluation is crucial in 
these systems [1, 4]. The most traditional methods for the reliability evaluation of 
SAPS are mainly deterministic techniques. However, these techniques do not define 
consistently the true risk of the system, as they can lead to very divergent risks even 
for systems that are very similar [5]. In addition, these techniques cannot be extend-
ed to include intermittent sources, such as wind energy [6]. A second approach for 
reliability evaluation of power systems is direct analytical methods. These methods 
overcome the problems of deterministic techniques, but they cannot completely 
recognize the chronological variation of intermittent sources, such as wind and solar 
energy. These factors can be incorporated using the Monte Carlo simulation (MCS), 
which however increases significantly the computation time.

This chapter investigates the effect of reliability worth on the optimal economic 
operation of SAPS that is based on RES technologies. The location of the studied 
system is in Chania region, Greece. The optimization procedure is implemented 
with a combined genetic algorithm (GA) and local search procedure. GA is a pow-
erful optimization technique that has been proposed for the solution of a variety of 
problems, including optimal SAPS sizing [7–9] and distributed generator placement 
in power distribution networks [10]. In the optimization procedure, the objective 
function is the minimization of SAPS cost of energy (in €/kWh), and three scenarios 
are examined: (i) no consideration of reliability worth, (ii) consideration of reli-
ability worth for agricultural load type, and (iii) consideration of reliability worth 
for residential load type. In addition, this chapter examines the effect of consider-
ing SAPS components forced outage rate in the obtained optimal solutions for the 
above three examined scenarios. This analysis, which is implemented via MCS, 
aims to highlight the difference between the results obtained from a typical SAPS 
optimization procedure (e.g., [7–9, 11]), and the results of an approach that takes 
into account reliability issues related to the operation of the studied system. This 
procedure is repeated for a large number of alternative scenarios, in order to study 
the effects for a large number of key and uncertain parameters.

The chapter is organized as follows. Section 2 presents information about reli-
ability analysis of power systems, as well as details about the calculation of reliabil-
ity worth. Section 3 formulates the optimization problem, whereas Sect. 4 presents 
SAPS modeling details. Section 5 provides a brief description of the examined sys-
tem and compares the results of the optimization procedure and the MCS. Section 6 
presents the results of sensitivity analysis and Sect. 7 concludes the chapter.

2  SAPS Reliability Analysis

A variety of probabilistic indices can be calculated, in order to evaluate the perfor-
mance of a power system in a reliability framework. The two basic probabilistic 
indices used are the loss of load expectation (LOLE) and the loss of energy expec-
tation (LOEE) [5]. LOLE is defined as the average number of hours for which the 
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3Evaluating the Performance of Small Autonomous Power Systems Using … 

load is expected to exceed the available capacity. On an annual basis, LOLE can be 
expressed mathematically as:

LOLE = ∑∆
∆

t t ioutage
t

• ( )

 
(1)

where toutage(i) is equal to 1 for the case that the load in time step i is greater than the 
generating capacity plus the battery storage level and 0 otherwise. LOEE is defined 
as the expected energy (in kWh) that will not be supplied when the load exceeds the 
available generation, and can be expressed as:

LOEE = ∑∆
∆

t e iunserved
t

• ( )
 

(2)

where eunserved(i) is the energy not supplied in the time step i of the year. However, 
the actual benefits of a power system’s operation can only be assessed by conduct-
ing relevant cost and reliability studies. It is therefore important to determine the 
optimal reliability level at which the reliability investment achieves the best results 
in reducing the customer damage costs due to power supply interruptions. This ap-
proach can be expressed mathematically as the minimization of total cost, which is 
equal to the sum of life cycle cost and customer damage cost.

For the calculation of the expected customer damage cost, the customer damage 
functions (CDFs) have been used. The CDF is an index (expressed mainly in $/
kW) that depends on the type of user and the interruption duration. There are a few 
studies that contain interruption cost data. Reference [4] contains data for the power 
utilities of Canada. Similar studies in Greece [12] have shown coincidence with the 
Canadian results. The values of CDFs, limited for the type of users that are consid-
ered in our study, are presented in Table 1. Interruption costs for durations different 
than the values shown in Table 1 were estimated using the same slope of the straight 
line joining the two nearest duration values of Table 1.

The CDF values can be converted into an extended index that links system reli-
ability with customer interruption costs. One suitable form is the interrupted energy 
assessment rate (IEAR), expressed in €/kWh of unsupplied energy. The estimation 
of the IEAR indicates the severity, frequency and generation of the expected states 
of the generation model. In order to compute the IEAR, the expected customer 
interruption cost (ECOST) in €/year must be estimated first, taking into account 
the duration of interruption, the value of CDF and the unserved energy of each 
interruption. Then, IEAR can be calculated as follows:

AQ1

Table 1  CDF values (€/kW)
User sector Interruption duration

20 min 1 h 4 h 8 h
Agricultural 0.2541 0.4807 1.5289 3.0519
Residential 0.0689 0.3570 3.6400 11.6222
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4 Y. A. Katsigiannis et al.

IEAR
ECOST

LOEE
= .

 
(3)

For the investigation of SAPS performance, six reliability indices have been 
selected:

•	 LOLE.
•	 LOEE.
•	 Energy	index	of	unreliability	(EIU)	that	normalizes	LOEE	by	dividing	it	with	the	

annual energy demand.
•	 Frequency	of	interruptions	(FOI),	i.e.,	the	expected	number	of	times	that	loss	of	

load occurs per year.
•	 Duration	of	interruptions	(int),	DOI,	which	is	equal	to	LOLE/FOI,	expressed	in	

h/int.
•	 Energy	not	supplied	index	(ENSI)	that	is	equal	to	LOEE/FOI,	expressed	in	kWh/

int.

3  Problem Formulation

The SAPS optimal sizing problem has to fulfill the objective defined by (Eq. 4) 
subject to the constraints (Eq. 6)–(Eq. 9). This problem is solved for three different 
scenarios: (i) no consideration of reliability worth, (ii) consideration of reliability 
worth for agricultural load type, and (iii) consideration of reliability worth for resi-
dential load type.

3.1  Objective Function

Minimization of system’s cost of energy, min ( ).COE :

min ( ).COE (4)

The COE (€/kWh) of SAPS is calculated as follows:

COE
C

E
antot

anloadserved

=
 

(5)

where Cantot
 (€) is the total annualized cost and Eanloadserved

 (kWh) is the total annual 
useful electric energy production. Cantot

 takes into account the annualized capi-
tal costs, the annualized replacement costs, the annual operation and maintenance 
(O&M) costs, and the annual fuel costs (if applicable) of system’s components [11]. 
In case of considering customer damage costs, the value of COE includes IEAR.
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5Evaluating the Performance of Small Autonomous Power Systems Using … 

3.2  Constraints

•	 Unmet	load	constraint	[11]:

f
UL t

E
fUL

t
t

year

anload
UL= ≤

∑ ∆
∆

∆•

max

 
(6)

where fUL
 is the annual unmet load fraction, UL t∆  (kW) is the unmet load during 

the simulation time step ∆t  (h), Eanload
 (kWh) is the total annual electric energy 

demand, and fUL max
 is the maximum allowable annual unmet load fraction. By its 

definition, fUL
 is identical with EIU. In this chapter, the value of fUL max

 has been 
taken equal to 5 %.
•	 Minimum	renewable	fraction	constraint:

f
E

E
f fRES

anRES

antot
RES RES= ≥ ≤ ≤min minwhere 0 1

 
(7)

where fRES
 is the RES fraction of the system, EanRES

 (kWh) is the total annual 
renewable energy production, Eantot

 (kWh) is the total annual energy production of 
the system, and fRES min

 is the minimum allowable RES fraction. In this chapter, the 
value of fRES min

 has been taken equal to 80 %. As a result, the energy production of 
studied SAPS is based mainly on RES technologies.
•	 Components’	size	constraints:

size compcomp ≥ ∀0
 

(8)

size size compcomp comp≤ ∀max

 
(9)

where sizecomp  is the size of system’s component comp, and sizecomp max  is the maxi-
mum allowable size of comp . The values of sizecomp max  are shown in Table 2.

4  SAPS Components and Modeling

The considered SAPS has to serve electrical load, and it can contain the following 
component types:

•	 WTs.
•	 Polycrystalline	silicon	(poly-Si)	PVs.
•	 Generator	with	diesel	fuel.
•	 Lead-acid	batteries.
•	 Converter.
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6 Y. A. Katsigiannis et al.

The modeling of SAPS components is implemented as follows. The WT modeling 
is implemented using a power curve profile that is based on manufacturer’s data. 
The selected WT has the following characteristics: rated power 20 kW AC, cut-in 
speed Vin( )  3 m/s, and cut-out speed Vout( )  24 m/s. For the WT power curve fitting, 
a seventh order polynomial expression has been selected, as it provides accurate 
correlation with real data, while it presents exclusively positive values for the gen-
erated power in the interval [ ]V Vin out . The correlation between power curve’s real 
and fitted data is shown in Fig. 1.

The WT power curve refers to standard conditions at sea level, corresponding 
to a temperature of 15 °C (288.15°K) and air pressure of 101.325 kPa, resulting 
in a standard sea density ρair0 = 1.225 kg/m3 [13]. If the pressure and temperature 
conditions at the area of WT installation are different from those corresponding to 
the standard conditions, the resulting power from the WT power curve needs to be 
adjusted, multiplied by the following density ratio [14]:

Table 2  Component characteristic
Component sizecompmax Increment Capital 

cost
Replace-
ment cost

O&M  
cost

Fuel cost Lifetime

WTs (20 kW 
rated)

7 WT 1 WT 50,000 €/
WT

40,000 €/
WT

1,000 €/
year

− 20 years

PVs 50 kWp 1 kWp 2,500 €/
kWp

2,000 €/
kWp

0 − 25 years

Diesel generator 50 kW Variable 300 €/kW 300 €/kW 0.01 €/h 
per kW

1.5 €/L 
(diesel)

20,000 
oper. 
hours

Batteries 
(1500 Ah,4V)

300 bat. 12 bat. 1,000 €/
bat.

1,000 €/
bat.

10 €/bat. − 10,000 
kWh

Converter 50 kW 1 kW 1,000 €/
kW

1,000 €/
kW

0 − 15 years
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Fig. 1  Correlation between 
real and fitted data of WT 
power curve
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7Evaluating the Performance of Small Autonomous Power Systems Using … 

ρ

ρ

air

air

Pr

T0 101 325

288 15

273 15
= 



 +





.

•
.

. 
(10)

where ρair is the air density of the site (in kg/m3), Pr is the air pressure of the site 
(in kPa), and T is the air temperature of the site (in °C). Air pressure decreases with 
elevation above sea level, and for an altitude up to 5,000 m can be approximated 
by [13]:

Pr z z= − + −101 29 0 011837 4 793 10 7 2. . • . • • (11)

where z is the altitude (in m).
In the PV modeling, the output of the PV array PPV

 (in kW) is calculated from 
[15]:

P f P
G

G
T T CPV PV STC

A

STC

C STC T= + −( )( )• • • •1

 
(12)

where fPV
 is the PV derating factor, PSTC

 is the nominal PV array power in kWp 
under standard test conditions (STC), GA

 is the global solar radiation incident on 
the PV array in kW/m2, GSTC

 is the solar radiation under STC (1 kW/m2), TC
 is the 

temperature of the PV cells, TSTC
 is the STC temperature (25 °C), and CT

 is the PV 
temperature	coefficient	(−0.004/°C	for	poly-Si).	The	PV	derating	factor	is	a	scaling	
factor applied to the PV array output to account for losses, such as dust cover, aging 
and unreliability of the PV array, and is considered to be equal to 0.80. TC

 can be 
estimated from the ambient temperature Ta

 (in °C) and the global solar radiation on 
a horizontal plane G  (in kW/m2) using (Eq. 13) [16]:

 (13)

where NOCT  is the normal operating cell temperature, which is considered equal 
to 45 °C.

The diesel generator fuel consumption F  (L/kWh) is assumed to be a linear 
function of its electrical power output [17]:

F P Prated= +0 08415 0 246. • . • (14)

where Prated  is generator’s rated power and P  is generator’s output power. Lead-
acid batteries have been modeled assuming: (i) overall efficiency of 80 %, (ii) nomi-
nal voltage of 4V, (iii) nominal capacity (per unit) of 1,500 Ah (6 kWh), (iv) lifetime 
of 10,000 kWh, (v) minimum state of charge equal to 20 % of their nominal capac-
ity, and (vi) maximum charge and discharge current equal to C/5. Finally, converter 
efficiency has been taken equal to 90 %.

The simulation process examines a particular system configuration, in which 
components sizes satisfy constraints (Eq. 8) and (Eq. 9). The necessary inputs for 

T T
NOCT

GC a= +
−( )

.
•
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8 Y. A. Katsigiannis et al.

the simulation are: (i) annual time series data for wind speed, solar radiation, ambi-
ent temperature and load, (ii) component characteristics, (iii) constraint bounds, 
and (iv) general parameters (project lifetime, interest rate). The specific values for 
these	data	are	described	in	Sect.	5.1.	In	the	simulation,	for	every	time	step	Δt, the 
available renewable power (from WTs and PVs) is calculated and then is compared 
with the load. In case of excess, the surplus renewable energy is charging the bat-
teries, if they are not fully charged. If renewable power sources are not capable to 
fully serve the load, the remaining electric load has to be supplied by controllable 
generators and/or batteries. From all possible combinations, it is selected the one 
that supplies the load at the least cost. When the whole year’s simulation has been 
completed, it is determined whether the system is feasible, i.e., it is checked if it sat-
isfies the constraints (Eq. 6) and (Eq. 7). After the end of simulation, COE is calcu-
lated by taking into account: (i) the annual results of the simulation, (ii) the capital, 
replacement, O&M and fuel cost (if applicable) of each component, (iii) the ECOST 
(if considering CDFs), (iv) the components’ lifetime, (v) the project lifetime, and 
(vi) the discount rate.

An additional aspect of system operation arises, which is whether (and how) the 
diesel generator should charge the battery bank. Two common control strategies 
that can be used are load following (LF) strategy and cycle charging (CC) strategy. 
It has been found [18] that over a wide range of conditions, the better of these two 
strategies is virtually as cost-effective as an ideal predictive strategy, which assumes 
the existence of perfect knowledge in future load and wind conditions. In the LF 
strategy, batteries are not charged at all with diesel-generated energy; the diesel 
operating point is set to match the instantaneous required load. LF strategy tends 
to be optimal in systems with a lot of renewable power, when the renewable power 
output sometimes exceeds the load. In the CC strategy, whenever the diesel genera-
tor needs to operate to serve the primary load, it operates at full output power. A 
setpoint state of charge, SOCa

, has also to be set in this strategy. The charging of 
the battery by the diesel generator will not stop until it reaches the specified SOCa

. 
In this chapter, three alternative values of SOCa

 have been considered: 80 %, 90 % 
and 100 %, so the total number of examined dispatch strategies is four. CC strategy 
tends to be optimal in systems with little or no renewable power.

5  Results and Discussions

5.1  Case Study System

In the considered SAPS, the project lifetime and the discount rate are assumed to 
be 25 years and 5 %, respectively. The simulation time step is taken equal to 10 min 
(1/6 h). The annual wind, solar and ambient temperature data needed for the estima-
tion of WT and PV performance refer to measurements for the mountainous region 
of Keramia (altitude 500 m), in Chania, Crete, Greece. The annual SAPS peak load 
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9Evaluating the Performance of Small Autonomous Power Systems Using … 

has been considered equal to 50 kW, whereas the necessary SAPS load profile was 
computed by downscaling the actual annual load profile of Crete Island, which is 
the largest autonomous power system of Greece, with 600 MW peak load and 17 % 
min/max annual load. An additional noise has been added in the load profile, in 
order to reduce the min/max annual load ratio from 17 % (Crete power system) to 
12 % (SAPS).

The considered values for anemometer height and WT hub height are 10 m and 
35 m, respectively, assuming that power law exponent is equal to 0.20. Regarding 
PVs, it is considered that they do not include tracking system. The duration curves 
for load, WT production and PV production are depicted in Fig. 2.

The cost, lifetime, and size characteristics for each component are presented in 
Table 2. For each component, the minimum size is equal to zero. Moreover, with 
the exception of diesel generator, all components have constant increment of their 
size, as Table 2 shows. The considered sizes for the diesel generator are 0, 5, 10, 
15, 25, 30, 40, and 50 kW. For the SAPS sizing problem of Table 2, the complete 
enumeration method requires:

8 51 8
WTs PVs Dsl
� � � � � �⋅ ⋅ ⋅ ⋅ ⋅ =26 51 4 17 312 256

Bat. Conv. Disp.

, ,

 
(15)

i.e., over 17 million evaluations in order to find the optimal COE; in (Eq. 15) Disp. 
denotes the number of dispatch strategies. The computational time for each COE 
evaluation is 2.1 s. Consequently, the evaluations of the complete enumeration 
method require more than one year, for each one of the three considered scenarios. 
That is why it is essential to develop an alternative optimization method in order to 
solve the SAPS sizing problem in a fast and effective way.
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Fig. 2  Load, WT production, and PV production duration curves
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10 Y. A. Katsigiannis et al.

5.2  GA Implementation for SAPS Optimal Sizing

Genetic algorithms (GAs) mimic natural evolutionary principles and constitute 
powerful search and optimization procedures. More specifically, binary GAs bor-
row their working principle directly from natural genetics, as the variables are rep-
resented by bits of zeros and ones. Binary GAs are preferred when the problem 
consists of discrete variables. The considered sizes of each SAPS component can 
take only discrete values, so the binary GA is proposed for the solution of SAPS 
optimal sizing problem.

In the binary GA, two alternative GA coding schemes can be used: conventional 
binary coding and Gray coding. In the proposed GA, each chromosome consists of 
six genes, of which the first five genes represent the SAPS component sizes (WT, 
PV, diesel generator, batteries, and converters), while the sixth gene refers to the 
adopted dispatch strategy (LF or CC). For the handling of constraints, the penalty 
function approach is adopted, in which an exterior penalty term is used that penal-
izes infeasible solutions. Since different constraints may take different orders of 
magnitude, prior to the calculation of the overall penalty function, all constraints 
are normalized.

The optimum configuration parameters of the adopted GA are: population size 
Npop = 50, number of generations gn = 15, Gray coding, tournament selection, uni-
form crossover, and 0.01 mutation rate [8]. Additionally, the proposed GA is com-
bined with local search procedure, in order to ensure that the selected solution is 
optimal compared to its neighbor solutions. Table 3 presents the optimal configura-
tions and the six reliability indices for the three examined scenarios. As it can be 
seen, the consideration of no customer damage cost leads to a solution that presents 
the lowest COE. On the other hand, in this case the operation of SAPS is not the 
most reliable, since all reliability indices have their highest possible values in or-
der the SAPS operation to be feasible, according to the problem constraints. The 
consideration of CDF increases the COE and improves significantly the reliability 
of the system by decreasing the PV size and increasing the diesel generator size. 
It can be seen that the consideration of either agricultural CDF or residential CDF 
provides almost identical results. This can be explained by the fact that agricultural 
CDF values are larger for small interruptions, but significantly lower for larger in-
terruptions (more than 1 hour), as Table 1 shows. The optimal state is a compromise 
between these two situations, as reliability indices of Table 3 show. In all cases, the 
adopted dispatch strategy is LF, due to the large portion of RES technologies in 
energy	production.	The	total	number	of	performed	objective	function	( COE) evalu-
ations for the combined GA and local search procedure was 930 for all scenarios. 
Figure 3 shows the GA convergence for the three examined scenarios of Table 3.
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11Evaluating the Performance of Small Autonomous Power Systems Using … 

5.3  Consideration of Components Forced Outage Rate

In the analysis of Sect. 5.2, no forced outage rate for any component of the system 
has been taken into account, in order to focus on the interruptions driven by the 
incapability of the system to meet the load demand. However, in order to evaluate 
more realistically the performance of the system, an analysis of components forced 
outage rate has to be included. This task is crucial especially for a SAPS, because 
there is no other way to supply its load other than by itself. The analysis is applied 
to the three optimal solutions shown in Table 3. For each one of them, a sequential 
MCS [19] is applied for a total number of 500 runs.

The consideration of forced outage rate is applied to the 2 SAPS components that 
contain rotating parts: WTs and diesel generator. For the WTs, a forced outage rate 
of 4 % for each WT has been considered, with mean time to failure (MTTF) equal 
to 1,920 h and mean time to repair (MTTR) equal to 80 h [6]. For the diesel genera-
tor, it is assumed that it needs scheduled maintenance every 1,000 h of operation. 
The duration of the maintenance follows uniform distribution in the hour interval 
[2, …, 24]. Moreover, a starting failure of 1 % is included in the evaluation, while 
the repairing process follows the same distribution with the maintenance process 
[3].

The obtained results of MCS for the three examined cases are shown in 
Tables 4–6. These results include the minimum, maximum and average values, as 
well as the standard deviation of the six reliability indices and COE. Moreover, 
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Table 3  Optimal solutions of GA combined with local search
Scenario WTs PVs (kWp) Dsl(kW) Batteries Converter 

(kW)
Dispatch 
strategy

COE (€/
kWh)

No cus-
tomer 
damage 
cost

3 35 10 108 35 LF 0.2214

Agricultural 
CDF

3 50 40 144 40 LF 0.2659

Residential 
CDF

3 50 30 120 39 LF 0.2635

Scenario LOLE (h/
year)

LOEE 
(kWh/
year)

EIU FOI (int./
year)

DOI (h/
int.)

ENSI (k 
Wh/int.)

No cus-
tomer 
damage 
cost

1053 9708.73 4.987 % 689 1.529 14.091

Agricultural 
CDF

2.50 6.22 0.003 % 13 0.192 0.478

Residential 
CDF

55.50 224.92 0.116 % 148 0.375 1.520
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Fig. 3  GA convergence 
considering: a no customer 
damage cost, b agricultural 
CDF, c residential CDF
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13Evaluating the Performance of Small Autonomous Power Systems Using … 

the (dimensionless) coefficient of variation is calculated, which is the ratio of the 
standard deviation to the mean, as a measure of variability. As it can be seen, the 
consideration of forced outage rate increases significantly the values of the basic 
reliability indices (LOLE, LOEE, EIU) and COE. In some cases, the values of the 
remaining reliability indices may be smaller compared to these of Table 2, but this 
does not mean that the performance is better. For example, the low values of FOI 
are combined with the large values of DOI and ENSI, resulting in lower number of 
interruptions that have higher duration.

Another interesting conclusion, drawn from the results shown in Table 4–6, is 
the higher variability (expressed by the coefficient of variation) of the basic reliabil-
ity indices (LOLE, LOEE, EIU) and COE, in the scenarios of considering customer 
damage costs. In these two scenarios (agricultural and residential), the highest dif-
ference in variability is presented in COE, which can be explained by the fact that 
the residential customer damage cost is increased exponentially with the increase 
of interruption duration (see Table 1), affecting concurrently COE. Figures 4 and 5 
present the variation of COE for these two scenarios.

6  Sensitivity Analysis

The uncertainty in many SAPS variables over which the designer has no control 
makes essential the need for sensitivity analysis. The uncertain parameters may 
contain weather data, and/or cost data. In this section, six alternative scenarios 
have been developed and analyzed. These scenarios are based on the following 
modifications of the case study system of Sect. 5.1 (initial scenario):

•	 10	%	increase	of	wind	speed.	In	this	scenario,	the	annual	energy	production	of	
the WTs is increased by 9.08 %.

•	 10	%	decrease	of	wind	speed.	In	this	scenario,	the	annual	energy	production	of	
the WTs is decreased by 11.67 %.

•	 5	%	increase	of	solar	radiation.	In	this	scenario,	the	annual	energy	production	of	
the PVs is increased by 5.09 %.

•	 5	%	decrease	of	solar	radiation.	In	this	scenario,	the	annual	energy	production	of	
the PVs is decreased by 5.27 %.

Table 4  MCS results considering no customer damage cost
Index Min Max Average Standard 

deviation
Coeffcient of 
variation

COE (€/kWh) 0.2228 0.2366 0.2286 0.0023 0.0102
LOLE (h/year) 1102.33 1654.67 1303.61 92.83 0.0712
LOEE (kWh/year) 9757.55 16478.74 11850.02 990.62 0.0836
EIU 5.012 % 8.464 % 6.086 % 0.509 % 0.0836
FOI (int./year) 669 1078 798.80 63.21 0.0791
DOI (h/int.) 1.437 1.849 1.634 0.0599 0.0367
ENSI (kWh/int.) 12.127 18.290 14.850 0.7894 0.0532
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14 Y. A. Katsigiannis et al.

•	 20	%	increase	of	diesel	fuel	price	(from	1.5		to	1.8	€/L).
•	 40	%	capital	and	replacement	cost	reduction	of	renewable	energy	technologies	

(WTs and PVs). This reduction may be attributed either to technology improve-
ment and economies of scale, or to a modification in the regulatory regime that 
promotes the installation of RES technologies by offering incentives that reduce 
the capital and replacement cost of RES.

Tables 7–9 present the results of the above mentioned sensitivity analyses, as well 
as the initial scenario results for comparison purposes. More specifically, Table 7 
presents the minimum COE values and their corresponding optimal configurations, 
Table 8 shows the results of the combined GA and local search procedure (referred 
to as GA-local search), and Table 9 shows the results of the MCS (average values). 
Regarding the comparison of GA-local search and MCS, the conclusions are similar 
with those mentioned in Sect.  5.3. Figure 6 shows the variability of COE obtained 
from all MCS compared to COE values obtained from the A-local search proce-
dure. From the study of Fig. 6 it can be concluded that: (Eq. 1) all MCS obtained 
COE values are higher compared to those obtained from GA-local search proce-
dure, (Eq. 2) the highest variability of the MCS results appears when considering 
residential CDFs (because of the exponential increase of residential customer dam-
age cost with the increase of interruption duration), whereas the lowest variability 

AQ3

Table 6  MCS results considering residential CDFs
Index Min Max Average Standard 

deviation
Coeffcient of 
variation

COE (€/kWh) 0.2649 0.3606 0.2965 0.0170 0.0573
LOLE (h/year) 139.50 501.17 266.44 64.72 0.2429
LOEE (kWh/

year)
296.70 4930.19 1873.37 813.61 0.4343

EIU 0.152 % 2.532 % 0.962 % 0.418 % 0.4343
FOI (int./year) 445 773 560.41 55.72 0.0994
DOI (h/int.) 0.291 0.705 0.470 0.0733 0.1560
ENSI (kWh/

int.)
0.619 7.287 3.261 1.1635 0.3567

 Table 5  MCS results considering agricultural CDFs
Index Min Max Average Standard 

deviation
Coefficient of 
variation

COE (€/kWh) 0.2673 0.3174 0.2867 0.0091 0.0319
LOLE (h/year) 94.50 443.67 210.16 63.64 0.3028
LOEE (kWh/

year)
109.09 5479.53 1820.96 919.68 0.5051

EIU 0.056 % 2.814 % 0.935 % 0.472 % 0.5051
FOI (int./year) 450 793 566.40 62.51 0.1104
DOI (h/int.) 0.202 0.602 0.364 0.0720 0.1977
ENSI (kWh/

int.)
0.221 7.579 3.098 1.2635 0.4078
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15Evaluating the Performance of Small Autonomous Power Systems Using … 

appears when considering no customer damage cost, and (Eq. 3) in the majority of 
implemented MCSs, the average COE values assuming residential CDF are signifi-
cantly higher compared to agricultural CDF.

The study of Tables 7–9 provides the following main conclusions for the consid-
ered case study system:

•	 The	wind	potential	(scenarios	1	and	2)	affects	more	the	value	of	COE in com-
parison with the solar potential (scenarios 3 and 4).

•	 The	optimal	configurations	of	scenarios	3	and	4	(increased	and	decreased	solar	
potential) are almost identical with the optimal configurations of the initial sce-
nario.
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Fig. 5  COE histogram for 
residential load
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agriculture
 

364
365
366
367
368

369
370
371
372
373

Book ID: 317477_1_En Chapter ID: 10 Dispatch Date: 10/02/2014 Proof No: 1

A
ut

ho
r's

 P
ro

of



UNCO
RR

EC
TE

D P
RO

OF

16 Y. A. Katsigiannis et al.

•	 The	optimal	configuration	of	scenario	1	(increased	wind	potential)	considering	
no customer damage cost is the only case that does not contain the dispatchable 
diesel generator. As a result, the number of interruptions (FOI) is significantly 
increased.

•	 The	 (negative)	 effect	 of	 increased	diesel	 fuel	 price	 (scenario	5)	 is	marginally	
more severe than the (negative) effect of lower solar potential (scenario 4), but 
significantly less severe than the (negative) effect of lower wind potential (sce-
nario 2).

Table 7  Optimal configuration for sensitivity analysis scenarios
Case CDF WTs PVs 

(kWp)
Dsl (kW) Batteries Con-

verter 
(kW)

Dispatch 
strategy

COE (€/
kWh)

Initial No CDF 3 35 10 108 35 LF 0.2214
Agricul-

tural
3 50 40 144 40 LF 0.2659

Residen-
tial

3 50 30 120 39 LF 0.2635

Wind 
+ 10 %

No CDF 3 50 0 132 31 LF 0.2036
Agricul-

tural
3 42 40 120 39 LF 0.2466

Residen-
tial

3 31 30 144 38 LF 0.2433

Wind 
−	10	%

No CDF 3 50 10 144 36 LF 0.2449
Agricul-

tural
4 50 40 144 41 LF 0.2918

Residen-
tial

4 50 30 144 40 LF 0.2901

Solar 
+ 5 %

No CDF 3 34 10 108 36 LF 0.2200
Agricul-

tural
3 50 40 132 40 LF 0.2627

Residen-
tial

3 50 30 120 39 LF 0.2604

Solar 
−	5	%

No CDF 3 37 10 108 35 LF 0.2233
Agricul-

tural
3 50 40 156 40 LF 0.2693

Residen-
tial

3 50 30 132 39 LF 0.2668

Diesel 
+ 20 %

No CDF 3 39 10 96 37 LF 0.2287
Agricul-

tural
3 50 40 180 40 LF 0.2749

Residen-
tial

3 50 30 168 40 LF 0.2721

RES 
−	40	%

No CDF 4 37 5 108 33 LF 0.1802
Agricul-

tural
4 50 40 108 41 LF 0.2197

Residen-
tial

4 50 30 108 40 LF 0.2176
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17Evaluating the Performance of Small Autonomous Power Systems Using … 

•	 The	lower	cost	of	RES	technologies	(scenario	6)	results	in	the	system	with	the	
lowest	cost	( COE).

•	 Due	 to	 the	minimum	renewable	 fraction	constraint	value	of	80	%,	all	optimal	
configurations	contain	3	to	4	WTs,	whereas	the	PV	installation	is	always	greater	
that	 30	 kWp,	 while	 in	 many	 cases	 the	 installed	 PV	 capacity	 is	 equal	 to	 its	
maximum	possible	value	of	50	kWp.

Table 8  Sensitivity	analysis	results	for	GA—local	search	procedure
Case CDF GA—local	search	results

COE	(€/
kWh)

LOLE	
(h/year)

LOEE	
(kWh/
year)

EIU	(%) FOI	
(int/
year)

DOI	(h/
int)

ENSI	
(kWh/
int)

Initial No	CDF 0.2214 1,053 9,708.73 4.987 689 1.529 14.091
Agricul-
tural

0.2659 2.50 6.22 0.003 13 0.192 0.478

Residen-
tial

0.2635 55.50 224.92 0.116 148 0.375 1.520

Wind	
+	10	%

No	CDF 0.2036 806 9,724.86 4.995 1,020 0.790 9.534
Agricul-
tural

0.2466 2.00 5.95 0.003 10 0.200 0.595

Residen-
tial

0.2433 45.67 187.36 0.096 131 0.349 1.430

Wind	
−	10	%

No	CDF 0.2449 1,044 9,708.60 4.987 650 1.606 14.936
Agricul-
tural

0.2918 3.50 7.65 0.004 16 0.219 0.478

Residen-
tial

0.2901 56.83 237.55 0.122 147 0.387 1.616

Solar	
+	5	%

No	CDF 0.2200 1,045 9,689.45 4.977 679 1.539 14.270
Agricul-
tural

0.2627 2.50 6.22 0.003 13 0.192 0.478

Residen-
tial

0.2604 52.00 212.73 0.109 139 0.374 1.530

Solar	
−	5	%

No	CDF 0.2233 1,055 9724.58 4.995 699 1.509 13.912
Agricul-
tural

0.2693 2.50 6.58 0.003 13 0.192 0.507

Residen-
tial

0.2668 57.83 237.74 0.122 160 0.361 1.486

Diesel	
+	20	%

No	CDF 0.2287 1,052 9,725.84 4.995 711 1.480 13.679
Agricul-
tural

0.2749 2.50 6.22 0.003 13 0.192 0.478

Residen-
tial

0.2721 46.83 197.97 0.102 122 0.384 1.623

RES	
−	40	%

No	CDF 0.1802 803 9680.81 4.972 519 1.546 18.653
Agricul-
tural

0.2197 2.17 5.93 0.003 11 0.197 0.539

Residen-
tial

0.2176 35.83 149.76 0.077 94 0.381 1.593
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18 Y. A. Katsigiannis et al.

•	 In	all	cases,	when	agricultural	or	residential	CDFs	are	considered,	the	systems	
are notably more reliable (due to customer damage costs consideration). As a 
result, their optimal configuration contains significant higher capacity of the 
dispatchable diesel generator.

•	 In	all	the	examined	scenarios,	the	optimal	configurations	contain	large	number	
of batteries, converters of similar sizes, and adoption of LF dispatch strategy.

Table 9  Sensitivity analysis results for MCS
Case CDF MCS results (average values)

COE (€/
kWh)

LOLE 
(h/
year)

LOEE 
(kWh/
year)

EIU (%) FOI (int/
year)

DOI (h/
int)

ENSI 
(kWh/
int)

Initial No CDF 0.2286 1,303.61 11,850.02 6.086 798.80 1.634 14.850
Agricul-

tural
0.2867 210.16 1,820.96 0.935 566.40 0.364 3.098

Residen-
tial

0.2965 266.44 1873.37 0.962 560.41 0.470 3.261

Wind 
+ 10 %

No CDF 0.2057 1,067.53 11,591.58 5.954 1,357.88 0.786 8.537
Agricul-

tural
0.2648 214.11 1,852.61 0.952 582.52 0.360 3.056

Residen-
tial

0.2879 312.79 2,390.13 1.228 610.26 0.507 3.826

Wind 
−	10	%

No CDF 0.2524 1,300.71 11,572.20 5.944 764.22 1.705 15.161
Agricul-

tural
0.3059 188.02 1604.03 0.824 488.63 0.379 3.193

Residen-
tial

0.3155 221.96 1,566.89 0.805 436.75 0.502 3.497

Solar 
+ 5 %

No CDF 0.2272 1,333.53 11,889.95 6.107 772.79 1.727 15.388
Agricul-

tural
0.2791 203.15 1726.46 0.887 556.09 0.360 3.011

Residen-
tial

0.2920 267.11 1,952.32 1.003 540.73 0.489 3.525

Solar 
−	5	%

No CDF 0.2296 1,318.98 11,734.74 6.027 755.00 1.749 15.556
Agricul-

tural
0.2863 211.79 1,825.81 0.938 575.93 0.361 3.064

Residen-
tial

0.3077 285.79 2101.94 1.080 586.30 0.479 3.458

Diesel 
+ 20 %

No CDF 0.2360 1,297.18 11,773.18 6.047 780.61 1.664 15.096
Agricul-

tural
0.2946 194.82 1,807.78 0.929 489.78 0.389 3.538

Residen-
tial

0.3077 251.56 2,042.88 1.049 455.23 0.544 4.348

RES 
−	40	%

No CDF 0.1859 994.18 10,839.14 5.567 877.58 1.133 12.357
Agricul-

tural
0.2307 132.06 963.78 0.495 411.33 0.317 2.283

Residen-
tial

0.2367 206.00 1,372.09 0.705 420.37 0.485 3.189
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19Evaluating the Performance of Small Autonomous Power Systems Using … 

7  Conclusions

The reliability evaluation of SAPS that is based on renewable energy technologies 
is a complex and time consuming task, due to the intermittent nature of renew-
able resources, their variation, the high modularity of each part of the system, and 
the considered assumptions for the reliability analysis. In most cases, the optimal 
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Fig. 6  Variability of obtained COE from MCS compared to GA-local search COE considering: a 
no customer damage cost, b agricultural CDF, and c residential CDF
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20 Y. A. Katsigiannis et al.

sizing procedure of such systems takes into account reliability issues in a generic 
framework, using general constraints (such as maximum unmet load constraint). 
However, in order to be complete, this analysis has to take into account the effect of 
two more parameters: the reliability worth as well as the forced outage rate of SAPS 
components. This chapter shows that the consideration of the reliability worth and 
the forced outage rate in the analysis changes significantly the obtained results. 
Moreover, the operation of a real SAPS, as computed by considering the above two 
parameters, will be much different than the operation of a SAPS ignoring both the 
reliability worth and the forced outage rate. This chapter also shows that the type of 
load, which changes the reliability worth, may also affect the performance of SAPS. 
The above conclusions have been drawn using sensitivity analysis considering 
a large number of alternative scenarios that take into account the uncertainty of 
weather and cost data.
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